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We generalize the standard linear-response �Kubo� theory to obtain the conductivity of a system that is
subject to a quantum measurement of the current. Our approach can be used to specifically elucidate how
back-action inherent to quantum measurements affects electronic transport. To illustrate the utility of our
general formalism, we calculate the frequency-dependent conductivity of graphene and discuss the effect of
measurement-induced decoherence on its value in the dc limit. We are able to resolve an ambiguity related to
the parametric dependence of the minimal conductivity.
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The fact that measurements exert a back-action on the
measured object has attracted a lot of attention,1–3 partly due
to its relevance for the foundations of quantum physics, but
also because of implications for metrology4 and the design of
solid-state devices.5 Fundamental considerations necessitate
a distinction between selective and nonselective descriptions
of quantum measurements.6 Selective descriptions use sto-
chastic differential equations,7,8 or restricted path integrals,9

and result in conditional quantum dynamics when the mea-
surement results are recorded. Some properties of selective
measurements have been verified experimentally for areas as
diverse as cavity QED �Ref. 10� and superconducting phase
qubits.11 Nonselective descriptions represent the evolution of
the measured system irrespective of the measurement result.
This description takes into account all possible readouts, and
the actual readout is assumed not to be known.6,8 Quantum-
mechanical back-action on the unsharply measured system
causes loss of coherence between eigenstates of the mea-
sured quantity. In this work, we discuss measurement back-
action theoretically within the nonselective framework. This
approach makes it possible to determine how a macroscopic
observable such as the conductivity of a system is affected
when the current is detected in an unsharp-measurement sce-
nario. We derive a generalized Kubo formula where the mea-
surement back-action provides a natural damping mecha-
nism. We demonstrate the power of the developed general
formalism by calculating the frequency-dependent conduc-
tivity ���� of graphene,12 a promising candidate for future
microelectronics and nanoelectronics13 and also a low-
energy laboratory of relativistic physics.14,15 Electronic-
transport properties of graphene were analyzed in several
previous studies using different methods, e.g., the Landauer-
Büttiker formalism,16,17 the linear-response Kubo
formula,17–20 and the Boltzmann equation.21 It was found
that different parametric dependences of the dc conductivity
can result from different limiting procedures applied to ordi-
nary Kubo formulas.20 Within our generalized Kubo formal-
ism, we obtain physical conditions for when these results
apply. Two regimes can be distinguished by comparison of
the energy scale �� that quantifies measurement-induced de-
coherence with the greater one among the thermal energy
kBT and the chemical potential � �measured from the Dirac
point�. Weak back-action ����max�kBT ,��� results in

Drude-type behavior ��0��1 /�. In the opposite �strong-
back-action� limit, a mixing of intraband and interband con-
tributions occurs that changes the parametric dependence of
the dc conductivity such that ��0���.

We employ the linear-response �Kubo� formalism22 and

divide the system’s Hamiltonian into the part Ĥ0, which gov-

erns the free evolution, and 	Ĥ, the perturbation associated
with an external electric field E. For simplicity, we take the
latter to be constant in space and assume the field to be
applied between t=−
 and t=0. The perturbation Hamil-

tonian is 	Ĥ=−eE · r̂ei�t. In a nonselective description,2,3 the
dynamics of the density matrix, when the current is mea-
sured, is governed by a master equation with the back-action
caused by a term of Lindblad form23
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8 [ ĵ , � ĵ , �̂�] with the current operator

ĵ= i e
� �Ĥ0 , r̂� being our measured observable.24 We note that

the measured observable is arbitrarily chosen to be the cur-
rent, as it is relevant for the conductance calculation at hand.
The main parameter of an unsharp quantum measurement
device, as described by Eq. �1�, is the detection performance
�= �t�−1�j�−2, where t is the time resolution or, equiva-
lently, the inverse bandwidth of the detector and j the sta-
tistical error characterizing unsharp detection of the average
current. Within linear-response theory, we can linearize �̂
= �̂0+	�̂, where �̂0 is the system’s equilibrium density ma-
trix. Keeping only linear terms in Eq. �1�, we get
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assuming that the unsharp detection does not affect the equi-

librium and using �Ĥ0 , �̂0�=0 as well as �	Ĥ ,	�̂��0. Intro-
ducing �̂=e−Lt	�̂ yields
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= e−Lt�−
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Note that �̂ and 	�̂ have the same value at t=0, and both
vanish at t=−
. Integration yields
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The exponential factor in Eq. �4� ensures convergence of the
time integral, making it unnecessary to introduce the phe-
nomenological adiabatic damping parameter employed in
conventional linear-response theory.22 Inserting Eq. �4� into
the expectation value for the current density ĵ and dividing
by �E� yields the optical conductivity

������ = 

−


0

�K���t�ei�t + K��� �t��dt �5�

with the kernels

K���t� = −
1

i�
Tr� ĵ�e−L� ĵ��t��er̂�, �̂0��� , �6�

K��� �t� = Tr� ĵ�

E�

e−L� ĵ��t�−
�

8
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Equations �6� and �7� are the general result for the re-
sponse to an unsharp measurement and could, in principle,
be applied to any quantum system. As an instructive appli-
cation, we now use Eq. �5� to calculate the frequency-
dependent conductivity of single-layer graphene within the
continuum model for quasiparticles close to the K point in

the Brillouin zone. In Eq. �1�, the Hamiltonian Ĥ0 could, in
principle, include Coulomb interactions, impurity scattering,
density dependencies, etc. In the present work, we just use
the free-quasiparticle Hamiltonian for graphene in plane-
wave representation,

Ĥ0�k� = �v��xkx + �yky� , �8�

where kx and ky are the Cartesian components of wave vector
k, �i denote Pauli matrices acting in the sublattice-related
pseudospin space, and v is the Fermi velocity, which has a
value �106 m /s. With the position operator r̂ being the
wave-vector gradient, the current operator is ĵ�

= ie
� �Ĥ0�k� , r̂��= e

�

�Ĥ0�k�
�k�

. Single-particle eigenstates of clean
graphene can be written as a direct product of a plane wave
in configuration space with a spinor �n�= �k� � ���k. Here �
labels the electron and hole bands, respectively, and the
spinor wave function depends on wave vector k. The current
operators with the Hamiltonian �8� in the spinor space are
ĵx=ev�x, and ĵy =ev�y.

25 From the definition of the equilib-
rium density matrix in the spinor space we find �̂0���k

= f���k,�����k, and Ĥ0���k=��k,����k, where f is the Fermi-
Dirac distribution function and �k,�= � �k�. �For simplicity,
the speed v has been absorbed into k.� Together with the
antisymmetry in momentum space, this implies K��� =0. The
calculation of K�� is straightforward, and using the Laplace
transform to solve for the dynamics, we find

K���t� =
e2

�

 d2k

�2��2Res�K̃���k,�,z�ezt� , �9�

where Res stands for the sum of residues of the integrand. It
can be seen that Kxy =Kyx=0. The remaining two conductivi-
ties are identical, as a change in variables kx↔ky in the ex-
pression for Kxx yields Kyy. The choice of conductivity mea-
sured will decide what kind of back-action will influence the
system. Here we take ĵx, the current along the x direction,
which breaks the isotropy of the problem and we find

K̃xx�k,�,z� =

kx
2�k��16�2 − 8z� + 4�k�2 + z2��

�
�−� df����

d� �
�=�k,�

 + ky
2�z − 4��2�f���k,−� − f���k,+��

�k�3�16z�2 − 8�2ky
2 + z2�� + z�4�k�2 + z2��

, �10�

where the parameter �=�e2v2 /8 was introduced. The cubic
factor in the denominator of Eq. �10� has three roots zi,
which give the poles in Eq. �9�.

For small �, the roots are to lowest order z1=0 and z2,3
= �2i�k�. Using this and performing the time integration in
the limit �→0, the known intraband and interband contri-
butions
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cosh� �

kBT
 + cosh� ��

2kBT
 �12�

to the conductivity of clean graphene are found. The scale
factor �0=4e2 /h accounts for spin and pseudospin degenera-
cies.

In the following, the conductivity is calculated numeri-
cally for finite values of � from Eq. �5� with Eqs. �9� and
�10�. We use kBT as unit of energy. Figures 1 and 2 show the
ac �optical� conductivity,27 whereas Fig. 3 shows the dc con-
ductivity that is measured, e.g., in mesoscopic transport
experiments.
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In Fig. 1, the conductivity is shown as function of fre-
quency for different values of the coupling strength when the
chemical potential remains fixed. For high frequencies, the
conductivity saturates to the universal value � /8, indicated
by a dashed line. The detailed shape of the crossover to
saturation depends on � with higher values pushing it to
higher frequencies.

In the limit of small �, measurement-induced decoherence
appears to simulate the effect of life-time broadening due to
inelastic scattering,19,20,26 but a closer look reveals that it is
fundamentally different. Technically, the effect of � goes be-
yond merely broadening of distribution functions, it also
moves the position of their peaks in energy, thus changing
the resonance condition. For clean graphene, there is only a
delta function peak for the intraband contribution, whereas
here the intraband and interband contributions to the conduc-
tivity become mixed. The existence of such a mixing has
been inferred from recent experiments.27 The dependence on
the chemical potential is illustrated in Fig. 2. Generally, in-
creasing the chemical potential shifts the frequency beyond
which the conductivity attains its universal saturation to

higher values. This behavior is as expected theoretically26

and observed in experiments.27 At frequencies � smaller than
a few times the chemical potential, there is a significant de-
parture from the universal conductance plateau. For fixed �
and kBT the saturation point in scattering models is indepen-
dent of the scattering parameter, whereas in our work it
strongly depends on the value of �. For ����, the satura-
tion occurs as in clean graphene, whereas the opposite case
gives saturation for larger frequencies with increasing �, as
seen in Fig. 1.

When the effect of disorder is modeled conventionally by
a life-time broadening due to inelastic scattering,19,20 a Drude
peak is found for �� /kBT�0, with a height inversely pro-
portional to the inelastic-scattering rate. Since the master
equation describing the effect of quantum measurements is
formally identical to certain models of decoherence, we ex-
pect that ��0� /�0�1 /�. This turns out to be correct only for
���max�� ,kBT�, as can be seen in Fig. 3�b�. In the oppo-
site limit, the parametric dependence of the dc conductivity
is changed; it then grows linearly with �. A similar anoma-
lous behavior was obtained in Ref. 20 by applying an uncon-
ventional limiting procedure within the Kubo formalism.
Here we are able to readily identify the regimes where ordi-
nary Drude behavior or anomalous band-mixing behavior
will be exhibited. Clearly, observing the latter should be easi-
est when the chemical potential is at the Dirac point and the
temperature is low enough to satisfy ���kBT, which corre-
sponds to the minimal conductivity regime for graphene.
Figure 3�a� shows how the nonmonotonic � dependence of
the conductivity would be manifested in a typical transport
experiment where the chemical potential �i.e., the density� is
varied.
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FIG. 1. Frequency dependence of the conductivity of clean
single-layer graphene when the current is unsharply quantum mea-
sured. The chemical potential is fixed at � /kBT=1, and the value
for measurement-induced decoherence assumed for each curve is
indicated. The dashed line is at � /8. As the coupling to the mea-
surement device is decreased, the curves more closely resemble the
result found for clean graphene.
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FIG. 2. ac conductivity of single-layer graphene, for fixed
�� /kBT=1 and different values of chemical potential � �measured
from the Dirac point�.
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FIG. 3. �a� dc conductivity plotted as a function of chemical
potential for different values of �. The conductivity is linear in the
chemical potential for large values of � /kBT. �b� dc conductivity
shown as a function of �� /kBT for different values of the chemical
potential. For ��kBT and ����, the conductivity is inversely
proportional to the effective rate of decoherence, in analogy with
the behavior expected from inelastic impurity scattering. In con-
trast, for ���� there is direct proportionality. This behavior was
exhibited as long as ��kBT, whereas curves for ��kBT practi-
cally coincide.
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The theory presented here is based on an unsharp mea-
surement of the current density. To estimate the magnitude �
of measurement-induced decoherence, we must consider the
two situations most closely related to our result, optical con-
ductivity measurements, and mesoscopic transport measure-
ments. For the latter case, it can be easily seen that
e2v2 / �j�2 is the signal-to-noise ratio. Using typical values
��106 Hz for the bandwidth and I / I�10−3 for the
signal-to-noise ratio, we find that values up to �� /kBT
�10−1–102 can be achieved for T�1–300 K. For measure-
ments of the optical conductivity, the situation is more com-
plex, as the measured signal is induced by the currents gen-
erated by the applied optical field. As a result, additional
uncertainties such as geometrical factors and detector effi-
ciencies become important, possibly bringing down the de-
tection performance, but this can, in principle, be compen-
sated by the increase in bandwidth offered by optical
detectors, ��109 Hz.

In conclusion, we derived a new Kubo formula to study
the effect of measurement-induced back-action on the con-
ductivity. The back-action naturally introduces a source of
damping and thus makes the converged adiabaticity param-
eter frequently used in Kubo formula calculations superflu-
ous. We applied this approach to calculate the electric con-
ductivity of single-layer graphene. Mixing of the intraband
and interband contributions to the dc conductivity strongly
affect its parametric dependence on the detector performance
�. The regime of weak coupling to the measuring device
models a standard Drude-type behavior, whereas in the op-
posite limit of strong back-action, we find that measuring a
current in graphene will actually enhance the conductivity.
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